Пуля и плоть: неравное противостояние. Часть 2

5
Исследователям раневой баллистики со временем на помощь пришла совершенная техника – скоростная съемка, позволяющая создавать видео с частотой 50 кадров в секунду. В 1899 году западный исследователь О. Тильман применил такую камеру для запечатления процесса ранения головного мозга и черепа пулей. Оказалось, что мозг вначале увеличивается в объеме, затем разрушается, а череп начинает растрескиваться уже после вылета пули из головы. Трубчатые кости также продолжают разрушаться еще некоторое время после вылета пули из раны. Во многом эти новые материалы исследований опередили свое время, хотя именно они могли пролить немало света на механизм раневого воздействия. Ученые в те времена увлеклись немного иной темой.


Искровые фотографии движения пули в воздухе. 1 — образование баллистической волны при движении пули со скоростью, значительно превышающей скорость звука, 2 — отсутствие баллистической волны при движении пули со скоростью, равной скорости звука. Источник: "Раневая баллистика" (Озерецковский Л. Б., Гуманенко Е. К., Бояринцев В. В.)



Открытие головной баллистической волны, формирующийся при сверхзвуковом полете пули (более 330 м/с), стало очередным поводом для объяснения взрывного характера огнестрельных ранений. Западные исследователи в начале XX века полагали, что подушка сжатого воздуха перед пулей как раз и объясняет значительное расширение раневого канала относительно калибра боеприпаса. Эту гипотезу опровергли сразу с двух направлений. Во-первых, в 1943 году Б. Н. Окунев зафиксировал с помощью искровой фотографии момент пролета пули над горящей свечой, которая даже не шелохнулась.


Искровая фотография пролетающей пули с выраженной головной волной, которая не вызывает даже колебания пламени свечи. Источник: "Раневая баллистика" (Озерецковский Л. Б., Гуманенко Е. К., Бояринцев В. В.)

Во-вторых, за рубежом провели сложный эксперимент, обстреливая одинаковыми пулями из одного и того же оружия два глиняных блока, один из которых находился в вакууме – головная волна образовываться в таких условиях, естественно, не могла. Оказалось, что видимых различий в разрушении блоков нет, а значит, и собака была зарыта совсем не в области головной волны. И уже совсем забил гвоздь в крышку гроба этой гипотезы отечественный ученый В. Н. Петров, указавший, что головная волна способна образовываться только в случае, когда пуля движется быстрее скорости распространения звука в среде. Если для воздуха это порядка 330 м/с, то в тканях человека звук распространяется со скоростью более 1500 м/с, что исключает образование головной волны перед пулей. В Военно-медицинской академии в 1950-х годах не просто теоретически обосновали этот положение, но на примере обстрела тонкой кишки практически доказали невозможность распространения головной волны внутри тканей.

Пуля и плоть: неравное противостояние. Часть 2

Искровые фотографии ранения тонкой кишки 7,62-мм пулей патрона 7,62х54. 1,2 — скорость пули 508 м/с, 3,4 — скорость пули 320 м/с. Источник: "Раневая баллистика" (Озерецковский Л. Б., Гуманенко Е. К., Бояринцев В. В.)

На этом этап объяснения раневой баллистики боеприпаса физическими законами внешней баллистики оказался пройден – все поняли, что живые ткани гораздо более плотные и менее сжимаемые, чем воздушная среда, поэтому и физические закономерности там несколько иные.

Нельзя не рассказать о том рывке в раневой баллистике, который случился перед самым началом Первой мировой войны. Тогда масса хирургов во всех европейских странах была озабочена оценкой повреждающего действия пуль. Основываясь на опыте Балканской кампании 1912-1913 годов, врачи обратили внимание на немецкую остроконечную пулю Spitzgeschosse или «S-пулю».


Spitzgeschosse или «S-пуля». Источник: forum.guns.ru

У этого винтовочного боеприпаса центр масс был смещен к хвостовой части, что вызвало опрокидывание пули в тканях, а это, в свою очередь, резко увеличивало объем разрушений. Один из исследователей для точной фиксации этого эффекта в 1913-14 годах произвел 26 тыс. выстрелов по трупам людей и животных. Неизвестно, был ли центр тяжести «S-пули» смещен специально немецкими оружейниками, или это было случайно, но в медицинской науке появился новый термин – боковое действие пули. До этого времени знали только о прямом. Боковое действие заключается в повреждении тканей за пределами собственного раневого канала, что может вызвать тяжелые поражения даже при скользящих ранениях пулями. Обычная пуля, двигаясь в тканях прямолинейно, расходует свою кинетическую энергию в следующих пропорциях: 92% по направлению своего движения и 8% в боковом направлении. Увеличение доли расхода энергии в боковом направлении наблюдается у тупоголовых пуль, а также у боеприпасов, способных кувыркаться и деформироваться. В итоге уже после Первой мировой войны в научно-медицинской среде сформировались основные понятия зависимости тяжести огнестрельной раны от количества передаваемой кинетической энергии тканям, скорости и вектора передачи этой энергии.

Зарождение термина «раневая баллистика» (wound ballistics) приписывается американским исследователям Каллендеру и Френчу, которые в 30-40-х годах плотно занимались пробелами огнестрельных ранений. Их экспериментальные данные вновь подтвердили тезис о решающем значении скорости пули в определении тяжести «огнестрела». Также было установлено, что потеря энергии пули зависит от плотности повреждаемой ткани. Более всего пуля «тормозится», естественно, в костной ткани, менее в мышечной и ещё меньше — в легком. Особо тяжелых ранений, по мнению Каллендера и Френча, следует ожидать от высокоскоростных пуль, летящих со скоростями более 700 м/с. Именно такие боеприпасы способны вызвать истинные «взрывные ранения».


Схема движения пули по Каллендеру.


Схема движения пули по Л. Б. Озерецковскому.

Одними из первых, кто зафиксировал преимущественно устойчивое поведение пули калибра 7,62 мм, стали отечественные ученые и врачи Л. Н. Александров и Л. Б. Озерецкий из Военно-медицинской Академии им. С. М. Кирова. Обстреливая глиняные блоки толщиной 70 см, ученые выяснили, что первые 10-15 см такая пуля движется устойчиво и только потом начинает разворачиваться. То есть в большинстве своем пули 7,62-мм в теле человека достаточно устойчиво движутся и, при определенных углах атаки, способны проходить навылет. Это, конечно, резко снижало останавливающее действие боеприпаса по живой силе противника. Именно в послевоенные времена появилась мысль об избыточности автоматного патрона 7,62-мм и назрела идея об изменении кинематики поведения пули в человеческой плоти.



Лев Борисович Озерецковский — профессор, доктор медицинских наук, основоположник отечественной школы раневой баллистики. В 1958 году закончил IV факультет Военно-медицинской академии им. С. М. Кирова и был направлен служить врачом 43-го отдельного стрелкового полка ЛенВО. Научную деятельность начал в 1960 году, когда был переведен на должность младшего научного сотрудника физиологической лаборатории 19-го научно-исследовательского испытательного артиллерийского полигона. В 1976 году за испытания комплекса стрелкового оружия калибра 5,45-мм был награжден орденом Красной Звезды. Отдельным направлением деятельности полковника медицинской службы Озерецковского Л. Б. в 1982 году стало изучение нового вида боевой патологии — тупой травмы груди и живота, защищенных бронежилетом. В 1983 году работал в 40-й армии в Республике Афганистан. Много лет работает в Военно-медицинской академии в Санкт-Петербурге.

На помощь в нелегком деле увеличения убойного действия пули пришла сложная регистрирующая аппаратура – импульсная (микросекундная) рентгенография, высокоскоростная киносъемка (от 1000 до 40000 кадров в секунду) и совершенная искровая фотография. Классическим объектом «обстрела» в научных целях стал баллистический желатин, моделирующий плотность и консистенцию человеческой мышечной ткани. Обычно используются блоки массой 10 кг, состоящие из 10% желатина. С помощью этих новинок было сделано небольшое открытие – наличие в поражаемых пулей тканях временной пульсирующей полости (temporary cavity). Головная часть пули, проникая в плоть, значительно раздвигает границы раневого канала как по оси движения, так и в стороны. Размер полости значительно превосходит калибр боеприпаса, а время существования и пульсации измеряется долями секунды. После этого временная полость «схлопывается», и в теле остается традиционный раневый канал. Ткани, окружающие раневый канал, получают свою дозу повреждений как раз во время ударной пульсации временной полости, что частично объясняет взрывной характер «огнестрела». Стоит отметить, что сейчас теория временной пульсирующей полости некоторым исследователями не принимается как приоритетная – они ищут свое объяснение механики пулевого ранения. Остаются малоизученными следующие характеристики временной полости: характер пульсации, зависимость между размерами полости и кинетической энергией пули, а также физическими свойствами поражаемой среды. Фактически современная раневая баллистика не может в полной мере объяснить зависимость между калибром пули, её энергией и теми физическими, морфологическими и функциональными изменениями, которые возникают в поражаемых тканях.

В 1971 году профессор А. Н. Беркутов в одной из лекций очень точно выразился относительно раневой баллистики: «Неослабевающий интерес к учению об огнестрельной ране связан с особенностями развития человеческого общества, которое, к сожалению, часто пользуется огнестрельным оружием…» Ни убавить, ни прибавить. Часто этот интерес сталкивается со скандалами, одним из которых стало принятие на вооружение малокалиберных высокоскоростных пуль 5,56 мм и 5,45 мм. Но это уже следующая история.
5 комментариев
Информация
Уважаемый читатель, чтобы оставлять комментарии к публикации, необходимо авторизоваться.
  1. +7
    5 сентября 2018 06:51
    Познавательно. Не знал про такие кульбиты пули. Спасибо автору.
  2. +7
    5 сентября 2018 08:30
    Хорошее продолжение. Маленькое замечание: на первой иллюстрации (фото №2) где, естественно, отсутствует головная ударная волна (баллистическая), по бокам пули отчётливо видны местные сверхзвуковые зоны. Пролёт пули над пламенем свечи впервые зарегистрировал Губерт Шардин (Германия) в 1930 году. Стоит сожалеть, что иллюстрации к тексту у автора столь низкого качества. На прилагаемом снимке начало пробития пулей металлической пластинки.
  3. +2
    5 сентября 2018 09:10
    Спасибо за статью)
  4. +2
    5 сентября 2018 12:11
    Да уж... вроде 21 век, а до сих пор многое не знаем...
    это как на вопрос - что такое электричество, дают стандартный ответ из учебника не раскрывая сути...
    Во времена сердюковщины ВМА мог "накрыться медным тазом"...
    1. +2
      6 сентября 2018 04:30
      Цитата: Deadушка
      ......Во времена сердюковщины ВМА мог "накрыться медным тазом"...
      Да говорили о переезде в Лисий нос? Но я думаю, здесь целый ряд факторов против сработали. Ведь многое изменилось и отложили реновации на Акадеической, в центре города в разных местах.....Говорили, московские инвесторы не пришли, кризис усиливался и всё осталось , как раньше.